facebook_pixel

Category Archives for "SCUBA Gear"

Warning: Why Your Weighting May Be All Wrong and How to Fix It

By Carlos Sagaro

If you’re like most divers, you probably have a set amount of weight that you carry with you as ballast when you dive

What you may not realize is that how you carry that weight is almost as important as the amount of weight itself.

Have you distributed that weight evenly across your rig so that your trim is balanced and you’re comfortable during your dive?

What would you do with the weight you carry with you in an emergency?

Is it important to you to be able to ditch your weight? If so, how much?

If you’re curious about the answers to any of these questions, then you’re going to want to read on.

In this article, we’re going to discuss a hot topic which is often overlooked yet critically important to your buoyancy control, trim, comfort and even your safety when you go diving.

One of the things that is counter intuitive when you learn to dive is the fact that you need to add weight to SCUBA dive.

Using an incorrect amount of weight when diving is one of the most common mistakes that many divers make. In many cases, people are diving with more weight than they need.

The cause may be doing an improper buoyancy check, sticking to weight that’s always been used but never tested, or simply adding more weight than what is really needed and compensating for it by adding air to the BCD.

Whatever the reason, in this article, we are going to dig into weighting and how you can use it to your advantage to improve your buoyancy, comfort level, breathing rate, and over all diving experience.

Why is Weighting Important?

Knowing and understanding how to be properly weighted will do wonders for you diving experience.

If you are over weighted or under weighted, your experience underwater is going to suffer. Let’s dig into some examples so you can see how:

What happens when you are over-weighted? 

First, imagine you were diving just 6lbs overweight. There are several problems which you will encounter. let’s go through them one at time.

  • Extra weight to carry around needlessly: That extra weight is going to need to be carried on and off of the boat. You may also be carrying it in your gear bag which is already heavy enough as is. What’s the point of carrying around dead weight that’s not needed?
  • Your propulsion may suffer: Every time you kick you’re moving more weight around than what is needed. It’s not just that weight itself. Because you need to compensate for the extra weight to stay neutrally buoyant you need to add extra air into your BCD. That extra air creates additional drag. This means more weight AND more drag in the water.
  • Your rig is likely off balance: It’s not just the amount of weight that you carry into the water, it’s where you position it that makes a difference in your diving. If like most divers you’re simply adding more weight to a weight belt or a BCD with ditch-able weights, there’s a good chance that, when you stop moving in the water column, your body is not in a balanced horizontal position like it should be.
  • It’s harder to get into and out of the water: That extra weight makes it harder to climb boat ladders. Even if you’re taking your rig or weight belt off and handing it up to climb on to a boat it’s still extra weight that doesn’t need to be there.
  • It can be extremely unsafe in the event of an emergency: If your BCD bladder or wing were to fail underwater this is now extra weight that you will need to swim up. If you ditch it, it may make it impossible to hold a safety stop or even lead to you having a fast or an uncontrolled ascent to the surface.

What happens when you are under-weighted? 

  • Not being able to compensate for consumed gas: One of the reasons you may need to carry additional weight is to compensate for the shift in buoyancy which happens as you consume the gas in your tank. The video below explains this shift in gas that happens when you dive.
    • This is especially prevalent when you use aluminum tanks. As you consume the gas in your tank, it becomes lighter and lighter. Eventually the weight of the gas that was keeping your buoyancy negative is no longer there. It’s at this point that you find yourself having to fight to stay down.
  • Needing to change your body position to stay underwater: When you do not have enough ballast, you cannot hover effortlessly underwater. Because of this, you need to either kick or hold on to something to keep from floating up. Needless to say, if you are kicking to stay down you’re consuming the gas faster and the cycle becomes worse and worse as you have less gas and less gas in the tank.



Types of Dive Weights

Now that you understand why it’s incredibly important to be properly weighted, let’s start at the beginning. There are several types of weights used by divers and each one of them has its pros and cons. In this section we are going to discuss a few of those systems and their characteristics.

Solid Lead Weights

Every diver has come across solid lead weights at one point or another in their diving. These are a tried and true type of weighting system.

To be thorough, because the name itself implies what they are, solid lead weights are a piece of lead molded to fit a weight belt. They come in a variety of sizes ranging from .5lb to 10lbs (.23 kg to 4.5 kg). In some cases, they are incased in rubber to make them more comfortable around the body and to minimize lead exposure.

The biggest plus about these weights is that they are the most compact and therefore produce the least amount of drag. They are one of the least bulky of the options. They also tend to last forever. They can be used both on a belt or inside BCD pockets. (more on this later).

The biggest con is that they can be uncomfortable if they’re in a position on your weight belt where they are hitting your hip bone. Also, you must be careful to not drop them as doing so can be very painful and can even cause injury if they land on your foot.

Beaded Lead Weights

There are several benefits to these types of weights. They are softer which makes them much more comfortable to store inside of BCD pockets and pocketed weight belts. Being malleable, they can counter to a diver’s body which makes them more comfortable when work on a weight belt. Lastly, and this has saved many a diver, if dropped they cause little to no damage.

As for the cons, beaded lead weights tend to be a bit more expensive. They also are bulkier, especially when used on a weight belt. Finally, the life span is probably not as long as lead weights since the material used to hold the pellets inside can rip.

Using Your SCUBA Tank as Ballast

It is common knowledge that tanks come both in aluminum and steel. While many divers do not think of them in this manner, steel tanks can be used as a weight.

Steel tanks as ballast

Unlike aluminum tanks, Steel tanks tend to remain negative even when they are empty. Additionally, Steel tanks are generally heavier than aluminum tanks and therefore can be used as a form of ballast. Steel tanks also tend to hold more gas than a similar size aluminum tank.

Finally, because the weight of a steel tank is distributed evenly across your back, steel tanks are often a good choice because they make it easier for you to achieve good trim and body positioning while on a dive.

The cons to diving steel tanks are that they tend to be more expensive, require more maintenance, and are usually heavier out of the water.

Aluminum Tank Considerations When It Comes To Weighting

Unlike most steel tanks, aluminum tanks tend to start negative and then end up slightly positive towards the end of your dive.

Just like steel tanks, when you are diving with aluminum you must consider where the tanks buoyancy characteristics end up at the end of your dive.

If you are neutral with a full aluminum tank at the start of you dive, you will be positive at the end of you dive which could cause all sort of problems. This means that you need to carry additional ballast to compensate for the positive buoyancy caused by a tank that is floating at the end of the dive.

Aluminum tanks are the most common type of tank because they are generally cheaper and also easier to maintain.

The bottom line is, whether you are diving with a steel or an aluminum tank, you must be aware of the tank’s buoyancy characteristics when it is empty or near empty. The last thing you want is to be slightly positive at the end of you dive.

Additional Tank Considerations

It is important to note that all tanks tend to become less negative as they start to empty during a dive. Every tank is different, and tank manufacturers publish charts which you can use to determine which tank is best for you.

Using these charts, you can get a good idea of what the buoyancy characteristics of different tanks are. However, you should be aware that these charts are only a starting point in helping you determine the amount of ballast that you’ll need.

Tank manufactures usually list the buoyancy characteristics of a tank without including the weight of the valve or the tank boot (if there is one). Additionally, the buoyancy characteristics are listed for a completely empty tank (something you should never do). Finally, you should also note if the buoyancy characteristics are for salt water or fresh water.

Armed with this knowledge and knowing the amount of gas that you will need for a dive, you can choose the most appropriate tank for your needs.

Regardless of whether you have a new tank or if you are using the same tank you’ve always used, you should always perform a buoyancy check with the tank being at its reserve pressure, either with your SCUBA gear on, or off the gear by itself in order to determine its buoyancy.

Common Types of Weighting Systems

Weight Belts

The nylon belts can only hold solid weights. If you use this type of belt you’ll also want to use a belt slide or stopper to keep the solid weights in their place.

The pocketed belt can hold both solid weights and beaded weights. Whether you are diving with a nylon or pocketed belt, they both should have a quick release in the event of a diving emergency. (we will go into ditching weights later in this article.)

Integrated weight pockets on BCD

It is fairly common for BCDs to have integrated weight systems. They usually consist of a removable weight pocket on the front side of the BCD attached to the cumber bun. 

These can be used in lieu of a weight belt. Essentially you insert the needed weight into the pockets and then insert the pocket into its slot in the BCD. You can use both solid and beaded weights with these pockets.

Weight Pockets on Tank Bands and on the Back of BCDs.

Backplates

These are normally used in conjunction with a harness and wing. In recent years, there have been a few more conventional BCDs that have been modified to use back plates as well.

There are generally two types of back plates, Steel and aluminum. Which you should use depends on your weighting needs and the type of diving you are doing. Steel back plates are generally heavier than aluminum and thus provide more negative buoyancy. 

How much negative buoyancy they provide depends on the manufacturer, so it is important to find out how negative a backplate is in the water before you purchase it to ensure you are getting the best one for yourself.

The biggest positive attributed to back plates when weighting is concerned is the fact that they tend to distribute weight evenly across your back which provides more stability in the water by helping to placing your body in a horizontal body position. This is a huge advantage because having better trim reduces drag. This reduction in drag causes you to work less when under water which causes you to burn less gas and enjoy longer, less tiring dives.

There are two aspects to back plates that can be considered negative depending on who you ask (more about this later). First, backplates are a permanent part of your BCD and cannot be ditched in an emergency scenario (see the section on “ditchable” weights if you want to learn more about this). Second, the vast majority of jacket- style BCDs will not allow you to use a backplate. This is something to consider if you are thinking about switching to a back plate.

A note on Ankle Weights

The idea is that they help with keeping your feet down. When diving dry, air can become trapped near the legs and cause your feet to become positively buoyant.

If you feel you need more weight at your feet to help with trim, my recommendation is to look for a heavier fin, use one of the many wraps that are available to place around your lower legs to prevent gas from traveling to your feet. Or simply work on placing less gas into your dry suit. Having excess gas near your feet is a common beginners mistake when learning to dive with a dry suit.

Can you figure out how much weight you need using a calculation?

“Ten percent of your body weight!”

There is a common misconception with some people that you can use a formula to figure out how much weight you need in order to dive. One such formula which is the old “ten percent of your body weight” myth.

The truth is that there really is formula you can use to accurately calculate how much weight you are going to need when you dive. The only real way to do this is to get in the water and do a buoyancy check. The video below explains how to do a buoyancy check for yourself. 

How To Do A Proper Buoyancy Check: Part 1

How To Do A Proper Buoyancy Check: Part 2

Once you know how much weight you need for yourself, now you can determine the amount of weight you need for your gear. 

Do your ballast requirements ever change?

As stated in the previous section, only a buoyancy check can determine exactly how much weight you are going to need on a given dive. The reason why is because that number varies depending on several factors that we will go over in this section.

  • Your Gear: The equipment you use will certainly impact the amount of weight you are going to need when you go diving. When diving with a 5mm wetsuit, you are going to need more weight than when you diver with a dive skin or no exposure protection, simply because the thicker suit is more positively buoyant. The same is true if you switch from diving an aluminum tank to a steel tank or vice versa. Also, if you carry additional gear into the water such as reels, lights cutting devices etc.… All this equipment adds up and will affect the amount of ballast you need in the water.
  • Shell Dry Suits: A shell dry suit is a suit designed to keep a diver dry which does not in and of itself provide thermal protection. Shell dry suits require undergarments that give you the desired thermal protection based on your needs and the water temperature. Because these undergarments tend to be more positively buoyant the thicker they get, you will need to adjust your ballast needs accordingly.
  • Your body: Your buoyancy characteristics can change if your body composition changes. Let’s face it, sometimes we let ourselves go and we gain fat. Perhaps at other points in our lives we go on a diet and lose some of the unwanted fat. These changes in your body composition can affect your weighting needs. The more body fat you have, the more weight you need to achieve proper buoyancy.

Do your ballast requirements ever change?

As stated in the previous section, only a buoyancy check can determine exactly how much weight you are going to need on a given dive. The reason why is because that number varies depending on several factors that we will go over in this section.

  • Your Gear: The equipment you use will certainly impact the amount of weight you are going to need when you go diving. When diving with a 5mm wetsuit, you are going to need more weight than when you diver with a dive skin or no exposure protection, simply because the thicker suit is more positively buoyant. The same is true if you switch from diving an aluminum tank to a steel tank or vice versa. Also, if you carry additional gear into the water such as reels, lights cutting devices etc.… All this equipment adds up and will affect the amount of ballast you need in the water.
  • Shell Dry Suits: A shell dry suit is a suit designed to keep a diver dry which does not in and of itself provide thermal protection. Shell dry suits require undergarments that give you the desired thermal protection based on your needs and the water temperature. Because these undergarments tend to be more positively buoyant the thicker they get, you will need to adjust your ballast needs accordingly.
  • Your body: Your buoyancy characteristics can change if your body composition changes. Let’s face it, sometimes we let ourselves go and we gain fat. Perhaps at other points in our lives we go on a diet and lose some of the unwanted fat. These changes in your body composition can affect your weighting needs. The more body fat you have, the more weight you need to achieve proper buoyancy.
  • Your Diving medium: Are you diving in fresh or salt water. Are you diving in an area that is known to have more salinity than the regular ocean? These things will affect your ballast needs. You will need to use less weight when diving in fresh water than when you are diving in the ocean. Diving in an area that is known for heavier salinity, The Dead Sea or Salt Lake come to mind.

Variables Which Will Change During the Dive

It’s important for you to know that in addition to needing to change your ballast requirements according to your gear, your exposure protection, fluctuations in your body composition and changes between salt and fresh water, there are also factors which could change during the dive.

  • Lung volume affects your buoyancy. The larger lung volume you have the more buoyancy shift you will feel as you inhale and exhale while you are diving. You can control this by thinking about how you breathe. By taking shallower or deeper breaths, you can make pinpoint adjustments to your buoyancy without having to make ballast changes. This is an important note to make since breathing deeper or shallower can affect your buoyancy throughout the dive.
  • Neoprene compression: When diving a wetsuit or neoprene dry suit, it is important to understand that neoprene compresses at depth. This is not so noticeable with wetsuits that are 3mm or less, however if you are diving with a 5mm or 7mm wet suit this fact is important, especially if you are diving deep (over 66 feet or 20 meters) where the neoprene will compress significantly. 

    This causes a change in its buoyancy characteristics. The thicker your suit, the more this becomes a factor. When selecting your ballast requirements, you must consider the suits buoyancy before the neoprene is compressed as well as after it compresses. We will get into more details as to why this is important when we go into the topic of ditching weights later in this article.

What About “Ditchable” Weights? Don’t All Weights Need to be “Ditchable”?

Most of us were taught in our entry level SCUBA course that we need to be able to ditch all our weight quickly so that we can properly manage an emergency.

When you think about it, it sounds like it makes sense. If there is an emergency underwater and you need to bring yourself or another diver to the surface, ditching the weight may make it easier since there is less ballast to bring up. This is especially true if the diver is unconscious and wearing a lot of lead. It is also easier to establish buoyancy on the surface when there is less ballast.

Now, before we move on, let me ask you something. In the above scenario, why does ditching the weight make everything easier?

I’ll give you a moment to think about it…

Do you know why?

It’s because most of the time the diver is over-weighted!

If a diver is properly weighted, it means that they are carrying just enough ballast to remain neutral at the end of the dive with the reserve pressure in the tank.

Think about it this way, if your tank is 3lbs positive at the end of your dive, you are going to need to add 3lbs of ballast to your rig to offset that change.

Now, let’s look at this using the example of a diver using an aluminum 80 (12 liter cylinder).

The weight needed to offset the positive buoyancy an empty aluminum 80 (12 liter tank) is around 4 pounds (1.8 kg) in salt water. Of course, it is highly unlikely you will ever dive with a completely empty tank.

At its working pressure, an aluminum 80 is about 2lbs (.9 kg) negative.

This means that, if you are properly weighted, you should at most be 6lbs (2.7kg) negative at any point during the dive.

6 pounds (2.7 kg) is NOT a lot of weight. Every BCD or wing on the market that can easily offset that amount of weight. It’s also an amount of weight that any diver should be able to swim up easily even if you were to have your BCD fail on you and not able to hold air.

Why am I saying this?

Because for many divers taking the weight off of their weight belt and distributing that weight either through weight pockets on the tank bands, a stainless steel backplate, or even by using a steel tank instead of an aluminum tank makes a lot of sense.

Distributing your weight around in this manner makes you more streamlined and puts you in a horizontal body trim position when you dive.

The bottom line is that, as long as you are not over weighted, whether your weight is ditchable or not will not be a big deal.

NOTE: There is an exception to this and it’s when you are diving in cold water and using a thick (7mm or more) wet suit or diving a dry suit (more on that later).

Why Ditching Your Weights Can be Dangerous!

What if you really need a lot of ballast to dive?

Perhaps you just need more ballast because your anatomy requires it.

Either way, when you do a proper buoyancy check, you’ll know that you are diving with the amount of weight you need to offset the positive buoyancy of yourself and your gear.

As a rule of thumb, if that amount exceeds 8lbs (3.6kg) the practice of placing all your ballast either on your weight belt or in the ditchable pockets of a BCD while at depth can be dangerous.

You may be wondering why. It’s because, if you were to ditch all that weight at depth, you could possibly be placing yourself into a situation where you could go into an uncontrolled ascent the moment you lose all the ballast that was keeping you down.

Uncontrolled ascents can have catastrophic effects on a diver.

Things like an arterial gas embolism, decompression sickness, or a reverse block are all real dangers. There is also the danger of being finding yourself in an uncontrolled ascent while hearing the sound of an oncoming boat.

If you still choose to store all your weight in a system that makes it ditchable, you need to think about the possibility that you could accidentally lose all your ballast.

I’ve seen this happen many times over the years. A belt becomes loose or the Velcro that holds a weight pocket in place becomes worn and doesn’t hold as tightly any more. This could cause a diver to unknowingly lose all their weight.

The bottom line is that if you need a lot of weight to be neutral at the end of your dive, suddenly losing that weight can be dangerous. You need to think about where you are placing the weight that you need and why you are doing so.

When You Absolutely Should Be Able to Ditch Your Weights!

There is one scenario where you absolutely need to be able to ditch SOME of your weight. It’s when you are diving deep (over 100 feet / 30 meter) and using a wet suit that is 5mm thick or more.

Why? Because the wet suit will compress at depth. Neoprene is a material that is made up of microscopic nitrogen bubbles. Those bubbles compress the deeper you go.

This means 2 things:

  • Your wet suit will not insulate as well at deep depths as it does at shallower depths.
  • More importantly, because all those tiny microscopic bubbles are compressed, the suit will also be less buoyant at depth.

Because of this, you’ll need to compensate for the positive buoyancy that your suit loses at depth by adding gas to your BCD. It also means that you are more negatively buoyant at depth than you are when you are shallow.

Therefore, it is important for you to be able to ditch some of your weight at depth.

Should you experience a catastrophic event that renders your BCD useless, you may not be able to swim your way up to the surface because of the additional negative buoyancy caused by the compression of your wetsuit.

In this scenario, ditching some of your weight could save your life.

The above scenario poses a difficult decision. You may need to ditch some weight to be able to get to the surface but doing so puts you in a position where, once your suit becomes more positively buoyant, you could find yourself in an uncontrolled ascent.

Yes, it is a catch 22. The way I see it is, I would rather be slightly positive than extremely positive due to the fact that I had to ditch all of my ballast. This is why I think it is important to make only some of your ballast ditchable rather than all of it. The amount that you ditch should not exceed amount of buoyancy lost by the suit.

When Things Go Wrong: Abrupt Changes in Buoyancy

I have a confession to make. When I first started diving I thought that the chances of having a failure of your BCD or anything else that would severely affect your buoyancy was unlikely. Especially if you maintained your gear and always went diving with relatively new gear.

Boy was I wrong!

First, I had a dive where my own BCD broke at the elbow where the low-pressure inflator connects to the bladder.

About a year later I was doing a dive with a student and her high-pressure hose burst while on the dive.

A couple of years after that, I had a different BCD’s dump valve completely come off when I pulled on it to release some gas.

Over the years I’ve heard multiple stories just like these that happened to other people.

I’m telling you this because, if you dive long enough, you will experience equipment failures. It’s a part of the sport. Fortunately, if you are properly trained these are usually just minor annoyances as they were for me and my student.

There are several scenarios where your buoyancy can change quite rapidly and without warning. As a diver, it’s important for you to know about and plan for the possibility of these scenarios.

Equipment failures that can cause abrupt Buoyancy changes

Catastrophic equipment failures are not common but they can happen and it is important to consider these unlikely scenarios and how to handle them.

Becoming Positively Buoyant Unintentionally

Burst disk failure: In the event that the burst disk on the tank valve fails you will be put into a potentially dangerous situation. Firstly, you will be losing the gas in your tank quickly. Your ability to breath will be completely compromised and they tank’s buoyancy characteristics will change very abruptly.

The high-pressure hose or SPG (submersible pressure gauge) can burst also causing a rapid loss of gas.

Becoming Negatively Buoyant Unintentionally

Wing Failure: Catastrophic wing failures have been known to happen. When wings fail in this manner, they tend to fail at the elbow of the low-pressure inflator or at one of the dump valves.  This renders the wing useless as a tool for buoyancy control.

A tear in the BCD is a possibility, however tears do not always render wings completely useless and are a lot less common. A leak in the bladder can also affect buoyancy, however the leak’s size and position may allow the wing to be at least partially useful as you ascend to the surface.

In any of the scenarios above, immediately ending the dive and ascending becomes of paramount importance. As we discussed earlier, controlling that ascent is also important because rapid ascents can cause all sorts of potentially life-threatening diving injuries.

The Case for Redundant Buoyancy

Being able to swim up without the assistance of the positive buoyancy of your bladder is something that every diver should consider. As we mentioned before, this is especially important if you are diving with thick thermal protection in cold water.

It is because of this that we recommend that you only dive with the amount of weight needed to offset your gas. This will make you just slightly negative in the event that you are in a scenario where your bladder is no longer functioning.

That being said, there are several avenues you can choose should you want to carry redundant buoyancy.

  • Redundant wings: There are wings that have two bladders in them. They are designed to offset each other in the even that one should have a catastrophic failure. They will require two low-pressure inflator hoses attached to two independent low-pressure inflators
  • A Dry Suit: A dry suit can be used as redundant buoyancy in the event of a catastrophic wing failure. This is because by adding extra gas into your dry suit you can make yourself more positively buoyant.
  • Lift Bag: This is the least desirable option. However, should you find yourself in a scenario where your bladder is no longer functioning, a lift bag can be used to offset negative buoyancy. If this is your only option, you must be aware that the bag cannot just be shot up to the surface from all depths and it is important to try to control the amount of lift the bag is providing you in this situation. Controlling buoyancy with a lift bag is not easy therefore it is the least desirable option.

Ditching Weight at the Surface

Becoming Negatively Buoyant Unintentionally

Wing Failure: Catastrophic wing failures have been known to happen. When wings fail in this manner, they tend to fail at the elbow of the low-pressure inflator or at one of the dump valves.  This renders the wing useless as a tool for buoyancy control.

A tear in the BCD is a possibility, however tears do not always render wings completely useless and are a lot less common. A leak in the bladder can also affect buoyancy, however the leak’s size and position may allow the wing to be at least partially useful as you ascend to the surface.

In any of the scenarios above, immediately ending the dive and ascending becomes of paramount importance. As we discussed earlier, controlling that ascent is also important because rapid ascents can cause all sorts of potentially life-threatening diving injuries.

The Case for Redundant Buoyancy

Being able to swim up without the assistance of the positive buoyancy of your bladder is something that every diver should consider. As we mentioned before, this is especially important if you are diving with thick thermal protection in cold water.

It is because of this that we recommend that you only dive with the amount of weight needed to offset your gas. This will make you just slightly negative in the event that you are in a scenario where your bladder is no longer functioning.

That being said, there are several avenues you can choose should you want to carry redundant buoyancy.

  • Redundant wings: There are wings that have two bladders in them. They are designed to offset each other in the even that one should have a catastrophic failure. They will require two low-pressure inflator hoses attached to two independent low-pressure inflators
  • A Dry Suit: A dry suit can be used as redundant buoyancy in the event of a catastrophic wing failure. This is because by adding extra gas into your dry suit you can make yourself more positively buoyant.
  • Lift Bag: This is the least desirable option. However, should you find yourself in a scenario where your bladder is no longer functioning, a lift bag can be used to offset negative buoyancy. If this is your only option, you must be aware that the bag cannot just be shot up to the surface from all depths and it is important to try to control the amount of lift the bag is providing you in this situation. Controlling buoyancy with a lift bag is not easy therefore it is the least desirable option.

Ditching Weight at the Surface

Many of us were taught that, if there is an emergency situation on the surface, we should ditch our weight as well as the victim’s weight. This is to establish positive buoyancy.

Every choice in diving has tradeoffs. If you dive a steel tank, a stainless steel backplate, or even some pockets on a tank band, you’re carrying some weight that may not be able to be ditched.

The tradeoff for not being able to ditch the weight is being more streamlined and having better body position in the water. Both of these allow you to have longer more enjoyable dives. You also avoid the negative consequences of losing your ballast at depth and having an uncontrolled ascent.

As mentioned before, as long as you are weighted correctly, the negative buoyancy created choosing to distribute weight in this manner should be minimal and easily compensated for by the BCD.

The real problem is that there are a lot of divers that are over weighted.

Ditching weights on the surface becomes crucial when a diver is over weighted. It’s when divers are over weighted that you MUST BE ABLE TO DITCH THE WEIGHT. Not being able to do so makes it difficult to establish positive buoyancy.

So, the bottom line is, if you dive don’t be over-weighted. If you have buddies who dive, don’t let them be overweighed, and if you want to help other divers become aware of this topic, make sure you share this article.

As you can see, there are many factors to consider when thinking about weighting.

Still wondering what ballast options are best for you? Use our buoyancy tool below to determine what kind of ballast will best suit your needs.

Did we miss anything? Do you have any questions? Please feel free to comment below!!

Air Sharing: Why Your SCUBA Configuration Matters

By Carlos Sagaro

You're on a relaxing dive enjoying the beauty of the underwater world. You’ve left all your frustration and responsibilities above the surface. After all, this is where you come to “get away from it all,” right??

How will you deal with this scenario? Is the way you’ll handle it optimal? Can you go through the motions in your mind’s eye right now and feel confident you are ready to handle an exasperated out-of-air diver?

When it comes to sharing air, there are many different configurations that divers use.

If you’ve ever wondered why different divers configure their primary regulator and their octopus different ways, and what the pros and cons are of each configuration, you’re going to want to read on because in this article we are going to touch on exactly that!

Disclaimer: Before beginning our discussion on air sharing techniques and configurations, it’s important to note that air sharing, especially in an emergency, is a skill that must be mastered in confined water under the supervision of a qualified SCUBA instructor. Do NOT SWITCH YOUR CURRENT CONFIGURATION without proper training and coaching from a qualified SCUBA instructor!

The origins of air sharing

When SCUBA diving was still new and considered by some to be an “extreme” sport, the gear that was used wasn’t nearly as advanced as it is today.

Early SCUBA rigs only had one primary regulator to breathe from. If your buddy ran out of air underwater, the only option was to share your only regulator by passing it back and forth between you and your buddy. Essentially, you’d take turns taking breaths from a single regulator.

As SCUBA equipment became more advanced a redundant second stage was added. This redundant second stage, which is commonly known as an octopus, could be given to an out-of-air diver independently. Now both the out-of-air diver and the diver donating the air supply could breathe simultaneously from the same tank.

With the ability to have 2 divers breathing from the same tank come many questions about how to best configure your gear. The first question being….

Which regulator should you give a diver in distress?

Before we can address the issue of how to configure your regulators, we need to discuss the major philosophical difference in opinion that many SCUBA instructors have.

While there is not “right” answer here, let’s take a look at some of the pros and cons of each method.

Some of the pros of donating the primary regulator (the regulator the diver is breathing from) include:

  • The shared regulator is usually the higher performing regulator:  The out of air diver is likely to have a higher breathing rate because of the nervousness / anxiety cause from being out of air.
  • It puts the diver that is donating the air source in control of the situation:  This means that the diver who is less likely to be in a panicked state becomes the dive leader.
  • Because the regulator being shared is the one the diver is breathing from, it needs to be on a longer hose:  This allows for the octopus to be on a shorter hose and reduces the chances of it dangling along and getting caught on the reef.
  • This configuration is usually more streamlined.
  • If an out-of-air and panicked diver rips the functioning regulator out of your mouth, you can instinctively reach for your alternate regulator which is what you would breathe from under this scenario anyway.

The cons of donating the primary regulator in a buddy-breathing scenario include:

  • It requires more skill / training to share air in this manner then using an octopus for a distressed out-of-air buddy.
  • When using an air2 or other similar regulator that serves the dual purpose of an inflator and a secondary regulator, that secondary regulator may not be as high performing as the primary.
  • Because the out-of-air diver needs the diver donating the air to participate, it is more difficult to simply grab an octopus and begin breathing without the assistance of the diver with air: This will make it more difficult for the distressed diver to get to his or her much needed air.

Diving with an octopus to give out as the alternate air source is probably the most common configuration.

The pros of giving out the octopus to an out-of-air buddy include:

  • Because the donating diver does not need to actively give up his or her regulator, the person who is out of air can gain access to the gas without having to rely on the donating diver’s skill level or proficiency.
  • The diver that is donating the gas never has to take the regulator they are breathing from out of their mouth.

The cons of giving out the octopus to out-of-air buddy include:

  • Because the octopus is on a longer hose and is rarely used, it is more likely to dangle or get caught up on a reef or a wreck.
  • Because it can dangle behind a diver, if a leak or free flow occurs at the 2nd stage it can go unnoticed for far longer than it would with other configurations.
  • Many of the octopus regulators on the market are meant to be cheaper and thus have more breathing resistance. Giving a diver who may already be panicked because they ran out of air a poor performing regulator may aggregate their panic.

Now that we understand some of the pros and cons of using an octopus for an out-of-air diver vs. giving them the regulator you are already breathing from, let’s look at some of the different configurations.

Configurations where you give out the octopus to an out of air diver

The placement of the octopus holder should be somewhere in the “safety triangle”. This is an imaginary triangle that goes from your chin to your waist in front where the octopus can be easily accessed by both the diver and their buddy.

Having the Octopus on a holder

There are many different types of octo holders on the market. Each design has their benefits and drawbacks. The basic premise behind all octo-holders is the same.

They must hold the octopus securely throughout the dive so that the regulator does not accidentally become dislodged and begin to dangle. They must also simultaneously be easy to deploy and come lose if it is needed for an emergency. (IMAGE of Octo holder)

Because of this dichotomy, many octo-holders fail and end up having a diver dangle their octo behind them damaging both the regulator and the reef.

BCD with integrated Octo-holder

Using a D-ring as an octo holder

Yet another creative way to solve the octopus dilemma is to curl it into the D-ring of a BCD.

While this solution is less likely to result in the regulator becoming loose and dangling behind the diver, it does take a bit of getting used to.

Also, it may seem awkward to have the curled-up hose dangling below the D-ring where the octopus is stowed.

Configurations where the primary air source is donated

Air 2 (Regulator Low-Pressure Inflator Combo)

One of the most common configurations where the primary air source is placed on a longer hose and donated is when a diver is using an Air2 or similar inflator / regulator combo.

There are several low-pressure inflator / regulator combos on the market, but the SCUBA Pro Air 2 was one of the first systems that gained widespread use.

By combining the low-pressure inflator and the alternate air source into one, the diver effectively eliminates one hose from their SCUBA rig.

You also eliminate the possibility of having the octopus dangle because the hose used for the low-pressure inflator is typically much shorter than that of an octopus.

As mentioned before, the downside is that it requires the diver to be more involved in an out-of-air scenario because the must give out their primary regulator.

Because the hose on the Air2 is short, it makes it very awkward and less than ideal to be donated to another diver for air sharing.

Hogarthian set up (long hose tech diving set up)

The final configuration worth mentioning is one that was born in cave / technical diving but has been adopted by many recreational divers.

It is known as the Hogarthian rig named after Bill Hogarth Main.

The rig consists of the primary regulator being a longer hose (up to 7 ft) curled around the diver’s body. The octopus is worn on a necklace right under the diver’s neck.

In this configuration the octopus never comes off the necklace. In an emergency, the diver donates the longer hose and then switches to the octo.

Some advantages to this system include:

  • Most divers using this configuration opt to have 2 high performing regulators on your rig which eliminates the low performing octopus other divers use..
  • It eliminates the possibility of a regulator ever dangling because it’s nearly impossible for the octopus to come loose from the necklace..
  • If a diver ever approaches you in an out of air scenario, you can give away your primary and have almost instant access to your back up.
  • Because this set up often uses a much longer hose, it will give you the freedom to have some more space to move should you ever have to share air.

The only real downside to this configuration is that it does require training and practice in sharing air using this configuration. Also, if using a long hose for the primary, it does require extra care to not drag the primary regulator on the floor since it is on a very long hose.

Below is a Video where we discuss Air Sharing in Different SCUBA Configurations:

What configuration do you use and why? let us know in the comments below.

Nautilus Lifeline Marine Rescue GPS Review

By Carlos Sagaro

You're on a dive enjoying a beautiful reef. The time finally comes when you've consumed your gas and you and your buddy ascend to the surface. Once you break the surface you realize that you're are faced with the nightmare scenario every diver dreads...The boat is gone!

Maybe you just can't see it. Several minutes go by and you realize this is not the case. Maybe they had an emergency, surely another boat will come pick you up.

An hour and a half later you realize that's just not happening. What now? You and your buddy are stranded at sea and you haven't seen a boat for hours. That fancy SMB that can be seen several feet out of the water is useless, same goes for your whistle, they're only good if there's a boat nearby and looking for you. 

SCUBA divers navigating wall

I realize that this is a situation most of us don’t care to think about. Let’s face it, most of us dive to escape reality and relieve the stress we experience in our lives. Unfortunately, this scenario is more common than we want to admit. Being a SCUBA instructor, I read several stories about lost divers every year. Sadly, these divers are not always found before it is too late.

What if I told you there was a product available that could ensure that if, god forbid you ever found yourself on the surface all alone, you would not be left hoping that someone would come get you.

Say Hello to The Nautilus Lifeline Marine Rescue GPS

Nautilus Lifeline Marine Rescue GPS

How To Prevent Losing Your Dive Gear – Choosing SCUBA Gear Clips

By Carlos Sagaro

Have you ever lost a piece of expensive dive gear? As divers we all experience this at one point or another. I remember how frustrated I was when I lost a reel on a dive in the Keys. I saw it fall off of my rig and sink to the bottom, powerless to stop it. $125.00 dollars lost…

If this has happened to you, then you are definitely going to want to read on because we are about to go over a few simple steps you can take to ensure that you never lose another piece of expensive dive gear again.

Why You Need to Clip Off Your Gear

As divers we carry multiple pieces of gear. Things like primary and backup flashlights, compasses, submersible marker buoys, reels, whistles, cutting tools, etc. The list is long.

Because we carry so much gear with us, it is essential that we clip off every piece of equipment that we take with us into the water. The reasons could not be clearer.

First, dive gear is expensive and none of us want to lose our hard-earned equipment.

Second, clipping off our gear is important to protect the underwater environment. By making sure that our gear is both clipped off and snugly stowed away near our bodies and in pockets when we dive, we are ensuring the survival of the underwater environment that we so dearly love.

Preventing “Danglies”

We are all familiar with danglies. It is the term used by divers to describe hanging gear. Maybe you’ve seen them on your own dives. You are swimming and you look at another diver who has an octopus or maybe a flashlight hanging low off of their BCD. Maybe you’ve even seen this gear clumsily crashing into a reef or wreck as you cringe in disbelief.

At Greatdivers we take the protection of the underwater environment VERY seriously. Because of this we teach all of our students how to properly stow away equipment so that it does not dangle and cause damage to the fragile underwater environment.

Over the years we have tried several things to stow gear to our BCDs but have found that tire inner tubes tend work extremely well. All you have to do is take a used tire inner tube (I got an old one from a local bike shop for free) and cut it into strips and use it to affix things like lights to the shoulder straps of your BCD.

Please check out the video below to see exactly how we do this and how effective it is at keeping gear stowed away nice and tight:

How to Set Up Your BCD Pocket

Whether your BCD has pockets attached to it or you have purchased a pocket that you strap on to the webbing of your harness, all pockets should be properly set up.

Yes it is true that pockets usually have zippers or Velcro that keep them closed, but that in and of itself is not always enough. It not uncommon for divers to reach into their BCD pockets, go to take something out and accidentally lose a piece of gear in the process.

This is why we configure our pockets to ensure that we never lose a piece of gear when we reach in to retrieve our compass, reel or any other piece of gear stowed away inside of it.

We do this by looping a piece of bungee cord inside our pocket. By doing so we can clip off all the gear in our pocket to the cord so that we can easily have access to anything inside the pocket without accidentally losing another piece of expensive equipment. The short video above illustrates how we do this so please take a minute to check it out.

The Different Types of Clips

There are several different kind of clips that divers use to attach their gear to their BCDs. In this section we are going to review the two we recommend and one that we think is dangerous and no diver should ever take with them in the water.

Bolt Snap

Trigger Snap

Carabiner

How to Tie Your Clips to Your Gear

Most SCUBA equipment comes with loops that are designed to allow divers to tie clips to it. One question we get asked is what we use to tie the clips to the equipment.

We recommend braided nylon line. There are two reasons for this. First it is easily accessible since most dive reels and spools come with the line. In our experience these reels usually have more line that you need and it is not difficult to take a few feet and use it  attach clips to gear. Secondly, this line is EXTEMELY resilient underwater.

We do not recommend that you use tie wraps to affix gear to clips. Tie wraps tend to deteriorate after repeated exposure to salt water and can fail. This happens quite often.

Below is GIF showing exactly how we tie clips to gear. Please take a minute to watch it so that you can ensure that your dive gear remains with you for years to come.

If you found this post useful, just click below to download our free guide “The 8 Navigational Tools you should Never Dive Without.” In it we go over 8 little known tools you can use to help you navigate while you are underwater.

 

Feeling Lost During Your Dive Sucks! 

How to Tie Your Clips to Your Gear

Most SCUBA equipment comes with loops that are designed to allow divers to tie clips to it. One question we get asked is what we use to tie the clips to the equipment.

We recommend braided nylon line. There are two reasons for this. First it is easily accessible since most dive reels and spools come with the line. In our experience these reels usually have more line that you need and it is not difficult to take a few feet and use it  attach clips to gear. Secondly, this line is EXTEMELY resilient underwater.

We do not recommend that you use tie wraps to affix gear to clips. Tie wraps tend to deteriorate after repeated exposure to salt water and can fail. This happens quite often.

Below is GIF showing exactly how we tie clips to gear. Please take a minute to watch it so that you can ensure that your dive gear remains with you for years to come.

If you found this post useful, just click below to download our free guide “The 8 Navigational Tools you should Never Dive Without.” In it we go over 8 little known tools you can use to help you navigate while you are underwater.

 

Feeling Lost During Your Dive Sucks! 

Discover The 8 Little-Known Tools You NEED To Take With You On Every Dive To Avoid Being Lost!  ( FREE GUIDE )

X

SCUBA Mask Fogging up? How to Defog Your SCUBA Mask

By Carlos Sagaro

How to Prevent Your SCUBA Mask from Fogging Up

It has happened to all of us at one point or another. We have arrived at our dive site! We have been anticipating this for some time. The reef is waiting to display its opulence of life. The Crew gives us their briefing. We don our gear and are anxious to get in and enjoy the view. We enter the water and begin our descent into the abyss, and then it happens…OUR MASK FOGS UP!!!

It’s too late to go back now, we know that we will spend the rest of our dive with a foggy mask because we did not follow the right procedure to ensure that this does not happen. While it is not a serious situation, a foggy mask causes an inconvenience that it is impossible for us to ignore.

​Don't worry though, in this article you are going to learn a new scuba mask preparation procedure that will ensure that this does not happen to you ever again. Keep reading so you can learn what you can do to make it so you never dive with a fogged up mask again.

scuba mask fogging up, SCUBA mask anti fog, defog scuba mask

Mask Preparation: The Key to a No Fog Mask

***Disclaimer***

Different manufacturers have different processes that they use in the production of their masks. Before you do anything to your new mask, you need to read the instructions that come with it. The procedure that will be detailed below does not apply to masks that come factory-applied defog or no fog masks.

scuba mask fogging up, SCUBA mask anti fog, defog scuba mask

Mask manufacturers often spray their masks with silicon during the manufacturing process to protect the mask skirt as well as the glass. In many cases, this silicon spray is not removed as it also protects the mask during shipping. The problem is that, if not removed before diving, this silicon spray will make it practically impossible to stop your mask from fogging up. The best anti-fog spray for scuba masks in the world will not make a difference if you do not pretreat your dive mask.

The way we at Greatdivers suggest that you remove this spray is by cleaning your mask with toothpaste before your first dive. Cleaning the SCUBA mask the first time in this manner will make a huge difference in your ability to prevent it from fogging up.

Below is a video explaining how to do this:

Pre-dive Ritual that Prevents Your SCUBA Mask from Fogging Up.

Even if you clean your mask like we did in the video above, you will still need to apply some sort of SCUBA maskanti fog so it does not fog up. There are several liquids you can apply to your mask that will help you achieve this.

  • Antifog Spray: There are plenty of commercially available defogs you can use to prevent your mask from fogging up. The way they work is simple, you apply the solution to the inside of your mask and rub it in. You rinse off the excess and the residue leaves a film on the mask that prevents it from fogging up.
scuba mask fogging up, SCUBA mask anti fog, defog scuba mask

  • Baby Shampoo: Many people swear by this. A diluted solution of baby shampoo can be used in the same manner as the defog above. Divers who use this like it because it is designed not to irritate the eyes.
scuba mask fogging up, SCUBA mask anti fog, defog scuba mask

  • Spit: For many divers, spit is their method of choice. It is effective, ready-available and it most certainly does not irritate the eyes. Some people are not a fan because they are grossed out by the idea of using spit asdefog. I will admit, this is my method of choice and I do not mind a "spit mask."
scuba mask fogging up, SCUBA mask anti fog, defog scuba mask

I would like to mention one last thing, I have never been a fan of using mask buckets on dive boats. Often times they contain dish soap which can be extremely irritating and this is made worse when every other diver on the boat dunks their mask into the bucket. If you are going to use the mask bucket, I highly recommend that you try on your mask before you get in the water to make sure that it does not irritate your eyes.

What is your preferred method of dealing with a foggy mask?

Scuba Tank

Aluminum vs. Steel tanks: How Heavy is that SCUBA Tank?

By Jose Cernuda

What 2 metals are SCUBA tanks made of, Aluminum vs. Steel tanks, How heavy is a SCUBA tank

scuba diver being Neutral underwater

Are you over-weighted too? How much weight do I need for scuba diving?

By Jose Cernuda

SCUBA diving buoyancy control, How much weight do I need for scuba diving, Dive weights